Abstract

Abstract Elastostatic crack analysis in three-dimensional, continuously non-homogeneous, isotropic and linear elastic functionally graded materials and structures is presented in this paper. A boundary-domain-integral equation formulation is applied for this purpose, which uses the elastostatic fundamental solutions for homogeneous, isotropic and linear elastic materials and involves a domain-integral due to the material’s non-homogeneity. To avoid displacement gradients in the domain-integral, normalized displacements are introduced. The domain-integral is transformed into boundary-integrals over the global boundary of the cracked solids by using the radial integration method. A meshless scheme is developed, which requires only the conventional boundary discretization and additional interior nodes instead of interior cells or meshes. Numerical examples for three-dimensional crack problems in continuously non-homogeneous, isotropic and linear elastic FGMs are presented and discussed, to show the effects of the material gradation on the crack-opening-displacements and the stress intensity factors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.