Abstract

Composite polymer electrolytes (CPEs) are very promising for high-energy lithium-metal batteries as they combine the advantages of polymeric and ceramic electrolytes. The dimensions and morphologies of active ceramic fillers play critical roles in determining the electrochemical and mechanical performances of CPEs. Herein, a coral-like LLZO (Li6.4La3Zr2Al0.2O12) is designed and used as a 3D active nanofiller in a poly(vinylidene difluoride) polymer matrix. Building 3D interconnected frameworks endows the as-made CPE membranes with an enhanced ionic conductivity (1.51 × 10-4 S cm-1) at room temperature and an enlarged tensile strength up to 5.9 MPa. As a consequence, the flexible 3D-architectured CPE enables a steady lithium plating/stripping cycling over 200 h without a short circuit. Moreover, the assembled solid-state Li|LiFePO4 cells using the electrolyte exhibit decent cycling performance (95.2% capacity retention after 200 cycles at 1 C) and excellent rate capability (120 mA h g-1 at 3 C). These results demonstrate the superiority of 3D interconnected garnet frameworks in developing CPEs with excellent electrochemical and mechanical properties.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call