Abstract

PurposeLegged vehicles offer several advantages over wheeled vehicles, particularly on broken terrain, but are presently too slow to be considered for many high‐speed tasks. This paper presents an effective 3D controller for a high‐speed quadruped trot.Design/methodology/approachTo successfully regulate forward velocity and heading, secondary motions such as body pitch and roll must be stabilised. The complicated coupling between pitch and roll motion causes the control effort on one axis to disturb the motion and control effort of the other. Unlike the modular methods in previous research, the algorithm presented here employs a cooperative approach where pitch stability effort is directly accounted for by the roll controller.FindingsWhen the secondary motions such as pitch and roll are well stabilized, forward velocity and heading can be regulated up to 3 m/s and 20°/s, respectively.Research limitations/implicationsFor many quadrupeds, trotting is usually employed as the precursor to galloping, which is ultimately used at top speeds. Because these two gaits are commonly used together, we expect their control algorithms to share a number of similar components. It is then expected that understanding the quadruped trot will serve as a valuable foundation to understanding the quadruped gallop.Originality/valueThis appears to be the first reported regulation of quadruped heading while running at significant speeds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.