Abstract
Additive manufacturing (AM) or 3D printing is a rapid prototyping process that has captured the attention of architects and designers worldwide in the last few years. Multiple research groups and commercial entities are exploring different areas of 3D concrete printing (3DCP) with one of the main topics being the potential to improve the design freedom, while simultaneously achieving sufficient structural ductility. Based on the target design impression of a free form 3DCP structure, this study presents a number of 3DCP strategies to print arbitrary double-curved geometries with improved concrete ductility. A digital design-to-fabrication workflow was applied, consisting of defining parameters at various stages of the process. Two case study objects have been printed, both featuring double-curved surfaces achieved through cantilevered printing with support material, and by printing on a curved support surface, respectively. The former object acted as support for the latter. Entrained cables and secondarily added glass fibres were used to obtain ductility. The result is a double-curved 1 \(\times \) 1 m panel with fibre-reinforced printed concrete, as well as a double curved print bed, reinforced with high strength steel cables.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.