Abstract
Methods of Computational Fluid Dynamics are applied to simulate pulsatile blood flow in human vessels and in the aortic arch. The non-Newtonian behaviour of the human blood is investigated in simple vessels of actual size. Turbulence effects are taken into account. A detailed time-dependent mathematical convergence test has been carried out. The realistic pulsatile flow is used in all simulations. Results of computer simulations of the blood flow in vessels of two different geometries are presented. For pressure, strain rate and velocity component distributions we found significant disagreements between our results obtained with realistic non-Newtonian treatment of human blood and widely used method in literature: a simple Newtonian approximation. A significant increase of the strain rate and, as a result, wall sear stress distribution, is found in the region of the aortic arch. We consider this result astheoretical evidence that supports existing clinical observations and those models not using non-Newtonian treatment underestimate the risk of disruption to the human vascular system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.