Abstract

Single-cell gene expression analysis has contributed to a better understanding of the transcriptional heterogeneity in a variety of model systems, including those used in research in developmental, cancer and stem cell biology. Nowadays, technological advances facilitate the generation of large gene expression data sets in high-throughput format. Strategies are needed to pertinently visualize this information in a tissue structure-related context, so as to improve data analysis and aid the drawing of meaningful conclusions. Here we describe an approach that uses spatial properties of the tissue source to enable the reconstruction of hollow sphere-shaped tissues and organs from single-cell gene expression data in 3D space. To demonstrate our method, we used cells of the mouse otocyst and the renal vesicle as examples. This protocol presents a straightforward computational expression analysis workflow, and it is implemented on the MATLAB and R statistical computing and graphics software platforms. Hands-on time for typical experiments can be <1 h using a standard desktop PC or Mac.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.