Abstract

A real-structure based 3-D micromechanical computational model of poly (lactic acid) nanocomposites reinforced by randomly oriented halloysite nanotubes (HNTs) was developed and compared with an idealized model (conventional model) and experimental results. The developed idealized model consists of nanotubes with fixed aspect ratio and the proposed alternative real-structure based model takes the experimentally observed variations of HNTs sizes, impurities and aspect ratios into account. The requirements of the 3-D HNTs nanocomposite models have been explored by testing idealized, real structure based models, as well as models with hollow and solid cylinder-like reinforcements with varied amounts of HNTs. A unit cell model with cylindrical reinforcements (representing HNTs) and at least 30 inclusions gave promising results, provided the model includes actual information about HNT's size ranges and aspect ratios. Numerical studies were validated with experimental investigations and the developed real-structure based model gave more accurate results than idealized and analytical models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.