Abstract

Attention deficit hyperactivity disorder (ADHD) is one of the most common mental health disorders and it is threatening especially to the academic performance of children. Its neurobiological diagnosis is essential for clinicians to treat ADHD patients properly. Along with machine learning algorithms, and neuroimaging technologies, especially functional magnetic resonance imaging is increasingly used as biomarker in attention deficit hyperactivity disorder. Also, machine learning methods have been becoming popular at last times. This study presents an optimized 3-dimensional convolutional neural network to classify functional magnetic resonance imaging volumes into two classes to assist experts in diagnosing ADHD. To demonstrate the importance of extracting 3D relationships of data, the method has been tested on ADHD-200 public datasets and its performance on the hold-out testing datasets has been evaluated. Then the network performance has been compared with several recent ADHD detection convolutional neural networks in the literature. It has been observed that the proposed network has a promising performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call