Abstract

Three-dimensional (3D) visualization of bone-implant interfaces via electron tomography (ET) has contributed to the novel perspective of nano-osseointegration and offers evidential support for nanoscaled biomaterial surface modification. Conventional single-axis ET provides a relatively large field of view of the human bone to titanium implant interface showing bone structure arrangement near the interface. However, the "missing wedge" associated with conventional single-axis ET leads to artifacts and elongation in the reconstruction, limiting the resolution and fidelity of reconstructions, as well as the ability to extract quantitative information from nanostructured interfaces. On-axis ET, performed by 180° rotation of a needle-shaped sample, is a promising method to solve this problem. In this work, we present the first application of on-axis ET for investigation of human bone and laser-modified titanium implant interfaces without the missing wedge. This work demonstrates a near artifact-free 3D visualization of the nanotopographies of the implant surface oxide layer and bone growth into these features. Complementary electron energy-loss spectroscopy (EELS) mapping was used to illustrate the gradual intermixing of carbon and calcium (characteristic elements of bone) with the nanoscaled oxide layer of the implant surface. Ultimately, this approach serves as direct evidence of nano-osseointegration and as a potential platform to evaluate differently structured implant surfaces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.