Abstract

Recently, many studies have shown that extremely low frequency electromagnetic fields (ELF-EMF) may lead to enhanced cell proliferation and inhibit the growth of specific cancer cells. In this study, 3D cell-based biosensors and an ELF-EMF device are integrated for real-time, non-invasive monitoring of single cell culture and measurement under ELF-EMF. MDA-MB-231 cells are cultured in a three-dimensional cell capture and sensing array electrode (3D ECCSA) chip under different intensities of ELF-EMF. A single cell is captured in the electrode for long-term impedance measurement (12 h). In this period, MDA-MB-231 cell goes through three different stages: cell capture, cell growth, and cell division, which can be measured by changes in impedance. Furthermore, the cellular impedance in ELF-EMF was found to be significantly lower than that of the group without ELF-EMF. In addition, an equivalent circuit was developed to determine the cellular resistance and capacitive reactance, and Maxwell’s mixture theory was used to determine the cell conductivity and permittivity to verify the effects of electromagnetic fields on cell membrane permeability and calcium ion exchange.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.