Abstract

This paper presents a 3D software tool for the design and optimization of cathodic protection systems for submerged structures. It provides the corrosion engineer with a powerful tool for managing operational costs, significantly reducing expensive commissioning surveys and costly repairs, adding major value to the cathodic protection business. The software is entirely CAD integrated such that it can deal with 3D CP-configurations of arbitrary complexity with parameterisation of all geometrical dimensions. The CP model is based on the potential model describing the ohmic drop in the electrolyte (soil, water) with non-linear boundary conditions that model the electrochemical reactions at anodes and cathodes. In this paper, it is explained why the Finite Element Method is used to solve the problem. As an example the protection level of a hypothetical marine vessel using impressed current cathodic protection (ICCP) systems will be investigated. In addition, the underwater electric potential (UEP) of the vessel will be calculated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.