Abstract

Cardiac magnetic resonance imaging (CMRI) improves the diagnosis of cardiovascular diseases by providing images at high spatio-temporal resolution helping physicians in providing correct treatment plans. Segmentation and identification of various substructures of the heart at different cardiac phases of end-systole and end-diastole helps in the extraction of ventricular function information such as stroke volume, ejection fraction, myocardium thickness, etc. Manual delineation of the substructures is tedious, time-consuming, and error-prone. We have implemented a 3D GAN that includes 3D contextual information capable of segmenting and identifying the substructures at different cardiac phases with improved accuracy. Our method is evaluated on the ACDC dataset (4 pathologies, 1 healthy group) to show that the proposed out-performs other methods in literature with less amount of data. Also, the proposed provided a better Dice score in segmentation surpassing other methods on a blind-tested M&Ms dataset.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.