Abstract

Hierarchically porous carbons with tailor-made properties are essential for applications wherein rich active sites and fast mass transfer are required. Herein, a rapid aerosol-confined salt/surfactant templating approach is proposed for synthesizing hierarchically porous carbon microspheres (HPCMs) with a maze-like structure and large mesopore tunnels for high-performance tri-phase catalytic ozonation. The confined assembly in drying microdroplets is crucial for coherent salt (NaCl) and surfactant (F127) dual templating without macroscopic phase separation. The HPCMs possess tunable sizes, a maze-like structure with highly open macropores (0.3-30µm) templated from NaCl crystal arrays, large intrawall mesopore tunnels (10-45nm) templated from F127, and rich micropores (surface area >1000 m2 g-1 ) and oxygen heteroatoms originated from NaCl-confined carbonization of phenolic resin. The structure formation mechanism of the HPCMs and several influencing factors on properties are elaborated. The HPCMs exhibit superior performance in gas-liquid-solid tri-phase catalytic ozonation for oxalate degradation, owing to their hierarchical pore structure for fast mass transfer and rich defects and oxygen-containing groups (especially carbonyl) for efficient O3 activation. The reactive oxygen species responsible for oxalate degradation and the influences of several structure parameters on performance are discussed. This work may provide a platform for producing hierarchically porous materials for various applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call