Abstract

We present a method for the generation of higher-order tetrahedral meshes. In contrast to previous methods, the curved tetrahedral elements are guaranteed to be free of degeneracies and inversions while conforming exactly to prescribed piecewise polynomial surfaces, such as domain boundaries or material interfaces. Arbitrary polynomial order is supported. Algorithmically, the polynomial input surfaces are first covered by a single layer of carefully constructed curved elements using a recursive refinement procedure that provably avoids degeneracies and inversions. These tetrahedral elements are designed such that the remaining space is bounded piecewise linearly. In this way, our method effectively reduces the curved meshing problem to the classical problem of linear mesh generation (for the remaining space).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.