Abstract

A 3D bulk metamaterial (MM) containing amorphous multilayered split-ring resonators is proposed, fabricated, and evaluated. Experimentally, the effective refractive index is engineered via the 3D bulk MM, with a contrast of 0.118 across the frequency span from 0.315 to 0.366 THz and the index changing at a slope of 2.314 per THz within this frequency range. Additionally, the 3D bulk MM exhibits optical isotropy with respect to polarization. Moreover, the peak transmission and optical dispersion are tailored by adjusting the density of the split-ring resonators. Compared to reported conventional approaches for constructing bulk MMs, this approach offers advantages in terms of the potential for large-scale manufacturing, the ability to adopt any shape, optical isotropy, and rapid optical dispersion. These features hold promise for dispersive optical devices operating at THz frequencies, such as high-dispersive prisms for high-resolution spectroscopy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.