Abstract

Accurate discrimination of amyloid-β (Aβ) peptides containing familial point mutations would advance the knowledge of their roles in early-onset Alzheimer's disease. Herein, we simultaneously identified the mutant A21G, E22G, E22Q, and the wild-type (WT) Aβ18-26 peptides with aerolysin nanopore using a 3D blockage mapping strategy. The standard deviation of current blockade fluctuations (σb ) was proposed as a new supplement to current blockage (Ib /I0 ) and duration time (tD ) to profile the blockage characteristics of single molecules. Although the WT and A21G Aβ18-26 are indistinguishable in a traditional Ib /I0 -tD 2D description, ∼87 % of the blockade events can be accurately classified with half reduction of false identification using a combination of Ib /I0 , tD, and σb . This work offers an easy and reliable strategy to promote nanopore sensitivity of peptide mutants, leading to a more precise analysis of pathogenic mutations for developing effective diagnosis and treatment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call