Abstract

The generation of kidney organoids derived from human induced pluripotent stem cells offers various applications such as tissue regeneration, drug screening, and disease modeling. The traditional methodology for generating organoids presents challenges, including labor-intensive procedures, limited scalability, and batch-to-batch variability in organoid quality. To address these obstacles, we have developed a low-cost and readily accessible automated three-dimensional bioprinting platform capable of printing nephron progenitor cells derived from induced pluripotent stem cells to form kidney organoids. Bioprinted organoids expressed markers for major cell types of the kidney including podocytes, proximal tubules, distal tubules, and endothelial cells. Quantification of nephron-like structures in varying sizes of the organoids was also conducted. This study demonstrates the ability to efficiently generate kidney organoids with as few as 8000 cells. Our low-cost, high-throughput bioprinter holds the potential for fabricating various other organoids and tissue.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call