Abstract

Traditional in vitro culture models are unable to fully reflect the organ microenvironment, due to differences in terms of cell morphology, protein expression, cell-cell and cell-matrix interactions, and drug response. In contrast, the flexibility of bioprinting modes allows for the deposition of cell-containing biomaterials in any free-form-inspired 3D structures on chip. The main purpose of this study was to design and optimize commercially available Carbopol-based 3D printing formulations, because of their many advantages, such as low-cost, the ability to produce clear and stable gels, and the water thickening. For this purpose, three different Carbopol gels (EDT 2020 NF, Ultrez 10 NF and NF-980) were tested in terms of printability and biocompatibility, with lung cancer epithelial (A549) and normal lung fibroblast (MRC-5) cells. This study demonstrates that Carbopol is a promising candidate for the 3D printing of cell-laden constructs, both in terms of rheology and printing performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.