Abstract

Bioprinting cells with an electrically conductive bioink provides an opportunity to produce three-dimensional (3D) cell-laden constructs with the option of electrically stimulating cells in situ during and after tissue development. We and others have demonstrated the use of electrical stimulation (ES) to influence cell behavior and function for a more biomimetic approach to tissue engineering. Here, we detail a previously published method for 3D printing an electrically conductive bioink with human neural stem cells (hNSCs) that are subsequently differentiated. The differentiated tissue constructs comprise functional neurons and supporting neuroglia and are amenable to ES for the purposeful modulation of neural activity. Importantly, the method could be adapted to fabricate and stimulate neural and nonneural tissues from other cell types, with the potential to be applied for both research- and clinical-product development.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call