Abstract

Intra-articular trauma typically initiates the overgeneration of reactive oxidative species (ROS), leading to post-traumatic osteoarthritis and cartilage degeneration. Xanthan gum (XG), a branched polysaccharide, has shown its potential in many biomedical fields, but some of its inherent properties, including undesirable viscosity and poor mechanical stability, limit its application in 3D printed scaffolds for cartilage regeneration. In this project, we developed 3D bioprinted XG hydrogels by modifying XG with methacrylic (MA) groups for post-traumatic cartilage therapy. Our results demonstrated that the chemical modification optimized the viscoelasticity of the bioink, improved printability, and enhanced the mechanical properties of the resulting scaffolds. The XG hydrogels also exhibit decent ROS scavenging capacities to protect stem cells from oxidative stress. Furthermore, XGMA(H) (5% MA substitution) exhibited superior chondrogenic potential in vitro and promoted cartilage regeneration in vivo. These dual-functional XGMA hydrogels may provide a new opportunity for cartilage tissue engineering.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call