Abstract

Three-dimensional (3D) bioprinting is an emerging method for tissue regeneration. However, promoting the epithelial-mesenchymal interaction (EMI), while maintaining the characteristics of epithelial cells has always been a challenge in tissue engineering. Since EMI acts as a critical factor in bone regeneration, this study aims to promote EMI by recombining epithelial and mesenchymal cells through 3D bioprinting. Hertwig’s epithelial root sheath (HERS) is a transient structure appeared in the process of tooth root formation. Its epithelial characteristics are easy to attenuate under appropriate culture environment. We recombined HERS cells and dental papilla cells (DPCs) through 3D bioprinting to simulate the micro-environment of cell-cell interaction in vivo. HERS cells and DPCs were mixed with gelatin methacrylate (GelMA) separately to prepare bio-inks for bioprinting. The cells/GelMA constructs were transplanted into the alveolar socket of Sprague-Dawley rats and then observed for 8 weeks. Hematoxylin and eosin staining, Masson staining, and immunohistochemical analysis showed that dimensional cultural pattern provided ideal environment for HERS cells and DPCs to generate mineralization texture and promote alveolar bone regeneration through their interactions. 3D bioprinting technology provides a new way for the co-culture of HERS cells and DPCs and this study is inspiring for future research on EMI model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call