Abstract
Biointegration of a keratoprosthesis (KPro) is critical for the device stability and long-term retention. Biointegration of the KPro device and host tissue takes place between the surrounding corneal graft and the central optic (made by poly (methyl methacrylate)). Our previous clinical results showed that auricular cartilage reinforcement is able to enhance the KPro biointegration. However, the auricular cartilage is non-renewable and difficult to acquire. In this study, we developed a novel type of biomaterial using a three-dimensional porous polyethylene glycol acrylate scaffold (3D biological P-scaffold) carrier with chondrocytes differentiated from induced human umbilical cord mesenchymal stem cells (hUC-MSCs) and tested in rabbit corneas. The results showed hUC-MSCs bear stem cell properties and coule be induced into chondrocytes, P-scaffold is beneficial to the growth and differentiation of hUC-MSCs both in vivo and in vitro. Besides, after implanting the P-scaffold into the corneal stroma, no serious immune rejection response, such as corneal ulcer or perforation were seen, suggested a good biocompatibility of P-scaffold with the corneal tissue. Moreover, after implanting P-scaffold in together with the differentiated chondrocytes into the rabbit corneal stroma, they significantly increased corneal thickness and strengthened the host cornea, and chondrocytes could stably persist inside the cornea. In summary, the 3D biological P-scaffold carrying differentiated hUC-MSCs could be the preferable material for KPro reinforcement.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.