Abstract

Application of a ball-end milling process model to a CAD/CAM or CAPP system requires a generalized methodology to determine the cutting force coefficients for different cutting conditions. In this paper, we propose a mechanistic cutting force model for 3D ball-end milling using instantaneous cutting force coefficients that are independent of the cutting conditions. The uncut chip thickness model for three-dimensional machining considers cutter deflection and runout. An in-depth analysis of the characteristics of these cutting force coefficients, which can be determined from only a few test cuts, is provided. For more accurate cutting force predictions, the size effect is also modeled using the cutter edge length of the ball-end mill and is incorporated into the cutting force model. This method of estimating the 3D ball-end milling force coefficients has been tested experimentally for various cutting conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call