Abstract

3D cone beam imaging (CBCT) has allowed clinicians to better understand the anatomical variations of cranial anatomy. One crucial aspect of this technology plays is the understanding of alveolar bone morphology and remodeling. Variations in cortical bone thickness between individuals have been reported. No published study has analyzed the relationship between cortical bone thickness and rate of tooth movement. The aim of this study is to begin answering the question: is there an association between rate of tooth movement and cortical bone thickness? Twenty-three patients underwent extraction of a single premolar in each of the four quadrants prior to orthodontic therapy. Routine clinical records including 3D CBCT images were acquired of all patients prior to first premolar extractions. Rate of tooth movement in each quadrant for each patient was determined via mesiodistal millimetric measurements obtained by a single calibrated operator. With CBCT images, cortical bone thickness was measured at various levels from the alveolar crest along the long axis of the to-be-extracted first premolars. The association between cortical bone thickness and rate of tooth movement was analyzed. Statistically significant associations were found between rate of tooth movement and cortical bone thickness at levels 2mm, 5mm, and 8mm, apical to the alveolar crest in both the right and left maxillary quadrants (p < 0.05). Statistically significant associations were found between rate of tooth movement and cortical bone thickness at levels 5mm and 8mm apical to the alveolar crest in both mandibular quadrants (p < 0.05). Increased cortical bone thickness was associated with decreased rate of tooth movement. There was no statistically significant association between rate of tooth movement and cortical bone thickness 2mm apical to the alveolar crest of the to-be-extracted first premolars in the mandibular left nor right quadrants (p > 0.05). Results suggest an inverse relationship may exist between cortical bone thickness and rate of tooth movement in both the maxilla and mandible. Cortical bone thickness may have the potential to serve as a predictive tool for rate of orthodontic tooth movement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.