Abstract
We report Lagrangian measurements obtained with an acoustic Doppler velocimetry technique. From the Doppler frequency shift of acoustic waves scattered by tracer particles in a turbulent flow, we are able to measure the full three-component velocity of the particles. As a first application, we have studied velocity statistics of Lagrangian tracers in a turbulent air jet at R λ ∼ 320 and at various distances from the nozzle. The choice of an air jet is motivated by the fact that jets produce a well characterized high level turbulence and open air flows are well suited to simultaneously achieve classical hot wire Eulerian measurements. Therefore, we are also able to explicitly address the question of the differences between Eulerian and Lagrangian statistics. As Lagrangian tracers we use soap bubbles inflated with Helium which are neutrally buoyant in air and can be assimilated to fluid particles. Velocity statistics are analyzed. We show that the Lagrangian autocorrelation decays faster in time than its Eulerian counterpart.KeywordsDoppler Frequency ShiftIntegral Length ScaleProbability Density FunctionSoap BubbleLagrangian StatisticThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.