Abstract
3-chloro-1,2-propanediol (3-MCPD) is a newly discovered food process pollutant with nephrotoxicity. And the mechanism by which 3-MCPD affects male spermatogenesis has not been fully studied. Cell viability, blood-testis barrier (BTB) related protein, progesterone content, reactive oxygen species (ROS) generation, and cell apoptosis were determined by a CCK8 assay, western blot, ELISA, flow cytometry, and TUNEL staining, respectively. Wistar rats were divided into three groups: low-dose 3-MCPD, high-dose 3-MCPD, and control. Sperm parameters, hormonal levels, and biomarkers of oxidative stress in the testis and epididymis were detected by ELISA. Multiple molecular experiments including molecular docking and western blot were used to elucidate the underlying mechanisms. 3-MCPD affects testicular cell activity, and promotes ROS production and apoptosis. Disrupting the integrity of BTB in the body, downregulating sex hormones and sperm quality, and promoting apoptosis. 3-MCPD may function through CYP2C9. This study preliminarily explores the mechanism by which 3-MCPD affects spermatogenesis. It was found that 3-MCPD destroys the structure and function of BTB and damages the testicular function of male mice, thus affecting the process of spermatogenesis via CYP2C9.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.