Abstract

The atomic structure of the 3C-SiC(001)-3×2 reconstructed surface was analyzed precisely by high-resolution medium energy ion scattering (MEIS). The present MEIS analysis unambiguously shows that the (3×2) surface consists of Si adatoms (1/3ML, 1ML=1.05×1015atoms/cm2) on top and underlying Si adlayer (2/3ML) on the bulk truncated Si plane. As the result, the most probable structure is focused on the Two Adlayer Asymmetric Dimer Model predicted by ab initio calculations and the modified versions with alternating long and short dimers in the 2nd adlayer proposed by photoelectron diffraction (PED) and by grazing incidence X-ray diffraction (GIXRD) analyses. Observed MEIS spectra are well reproduced by the structure relatively close to that determined by PED rather than GIXRD. Interestingly, the first principle calculations using VASP (Vienna ab initio simulation package) prefer symmetric dimers in the second Si adlayer and non-relaxed interplanar distance between the top Si and 2nd C plane of the bulk-truncated surface, which are, however, unable to reproduce the observed MEIS spectra. The distorted 2nd adlayer (asymmetric dimers) may correlate with the compressed interplanar distance between the underlying Si and C planes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.