Abstract

The 3C120 (Mrk 1506, UGC 03087, Mrk 9014) is a type 1 Seyfert (Sy1)/broad-line radio galaxy (BLRG) with intriguing variable jet activity featuring “dip” and “outburst” phases. Significant X-ray observational datasets have been collected for 3C120 by INTEGRAL, XMM-Newton, SWIFT, Suzaku, and other X-ray observational facilities. The overall X-ray spectrum of 3C 120 is too soft for typical radio-loud AGN, likely due to both variable spectral shape and jet contamination. Separating the “jet base” and nuclear (disc/corona) counterparts in the X-ray spectrum of 3C 120 can provide us with the possibility to investigate its variability in a more detailed way. Our objectives are to estimate separately the time variations of the accretion disc/corona and SSC/IC jet emission counterparts in the 3C 120 X-ray spectra and to analyze the physical state of the nucleus during different phases. Here, we attempt to use the connections between the synchrotron radio- and X-ray SSC/IC jet spectra and their photon indices and the dependence between the nuclear continuum and Fe-K iron luminescent line emission near 6.4 keV to separate the nuclear and jet base contributions to the total X-ray continuum. Using the X-ray observational dataset of 3C 120, we obtained separated fluxes that were interpreted as originating from the nucleus (disc/corona) and non-thermal SSC/IC jet base contributions. After this component separation, we identified the accretion disc/corona and jet states during different phases and compared them with the “jet/disk cycle” (Lohfink) and “magnetic plasmoid reconnection” (Shukla/Manheim) models.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call