Abstract

Development of resistance to chemical pesticides has been reported in about 150 plant pathogenic species, mostly fungi. Biocontrol of plant pathogens is an alternative to chemical pesticides. Actually, there are products formulated with beneficial microorganisms, such as mycorrhizal fungi, rhizobacteria, antagonistic fungi, and others. The objective was to evaluate the development of Fusarium oxysporum f. sp. melonis (FOM) on melon plants inoculated with commercial biological formulations based on beneficial microorganisms. Twelve treatments were evaluated: T1) VAM media nursery + FOM; T2) Hortic Plus + FOM; T3) BioPak F + FOM; T4) Glomus intraradices + FOM; T5) FOM; T6) control; T7) VAM media nursery; T8) Hortic Plus; T9) BioPak F; T10) Glomus intraradices; T11) FOM + Mancozeb wp80; and T12) FOM + BioPak F. The melon cultivar used was `Colima' (Peto Seed Co.). Seeds were planted in Styrofoam growing containers containing coconut fiber powder as substrate. One seed was planted per cell and maintained until transplanting. Plants were transplanted to pots containing sterile soils 13 days postemergence. Inoculation of treatments with Fusarium was made with a concentrated suspension at 1 × 106 conidia/mL. For inoculation with beneficial microorganisms, manufacturer specifications were followed. A completely randomized design with 12 treatments and 12 replications was used to estimate the incidence of Fusarium, number of leaves, leaf area, root biomass, and percentage of roots colonized by mycorrhizal fungi. Overall, T10 showed the best behavior in all variables. Inoculation of cantaloupe plants with Fusarium affected their performance, but those treatments including mycorrhizal fungi enhanced their performance withstanding the damage by Fusarium.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call