Abstract

360° cameras can capture complete environments in a single shot, which makes 360° imagery alluring in many computer vision tasks. However, monocular depth estimation remains a challenge for 360° data, particularly for high resolutions like 2K (2048 × 1 024) and beyond that are important for novel-view synthesis and virtual reality applications. Current CNN-based methods do not support such high resolutions due to limited GPU memory. In this work, we propose aflexible framework for monocular depth estimation from high-resolution 360° images using tangent images. We project the 360° input image onto a set of tangent planes that produce perspective views, which are suitable for the latest, most accurate state-of-the-art perspective monocular depth estimators. To achieve globally consistent disparity estimates, we recombine the individual depth estimates using deformable multi-scale alignment followed by gradient-domain blending. The result is a dense, high-resolution 360° depth map with a high level of detail, also for outdoor scenes which are not supported by existing methods. Our source code and data are available at https://manurare.github.io/360monodepth/.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.