Abstract
Failure of sperm nuclear decondensation has been reported after injection into oocytes in pigs (Kren et al. 2003 J. Reprod. Dev. 49, 271-273). We examined the effects of pretreatment of spermatozoa with Triton X-100 (TX-100) and dithiothreitol (DTT) and electric stimulation of oocytes after injection on sperm decondensation, male pronuclear formation, and in vitro development to the blastocyst stage. We performed three replicates in each experimental group, with a total of about 70 oocytes per group. In Experiment 1, spermatozoa were pretreated with 1% TX-100 and 5 mM DTT (T+D), and injected into IVM oocytes that were collected from crossbred gilts. Electric stimulation (1.5 kV/cm, 20 �s; Nakai et al. 2003 Biol. Reprod. 68, 1003-1008) was applied 1 h to the oocytes after the injection (the stimulated group) or was not applied (the nonstimulated group). Some of the oocytes in each group were evaluated for morphological changes of sperm nuclei at hourly intervals until 10 h post-injection. Of nonstimulated oocytes, those injected with untreated spermatozoa showed a delayed peak in nuclear decondensation (39.4 to 44.1%, 3-6 h after the injection) compared to that of oocytes injected with T+D treated spermatozoa (57.0 to 52.6%, 1-1 h). The rate of male pronuclear formation increased after 4 h post-stimulation (by 40 to 60%) when the injected oocytes were stimulated, whether or not spermatozoa were pretreated. In nonstimulated oocytes, the rate of male pronuclear formation stayed at the basal level (less than 20%) throughout the culture period regardless of sperm treatments. Thus, the T+D treatment of spermatozoa did not affect decondensation and pronuclear formation. In Experiment 2, the effects of electric stimulation and sperm treatments with T+D on the rate of blastocyst formation and the mean numbers of cells per blastocyst were evaluated. Oocytes that were stimulated after injection of either T+D-treated or untreated spermatozoa showed significantly higher percentages of blastocyst formation (24.8% and 27.1%, respectively) than did nonstimulated oocytes (1.1% and 4.1% for T+D-treated and untreated, respectively; P < 0.01). The rate of blastocyst formation was not different between the T+D-treated and the untreated groups. The mean number of cells per blastocyst was not different among all groups (14.0-29.4). In conclusion, the pretreatment of sperm with TX-100 and DTT shifted the timing of sperm nuclear decondensation forward. However, pronuclear formation and development to the blastocyst stage in vitro were not improved by the sperm treatment. Electric stimulation to the injected oocytes enhances in vitro development to the blastocyst stage in pigs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.