Abstract
The base analog 6-N-hydroxylaminopurine (HAP) induces bidirectional GC-->AT and AT-->GC transitions that are enhanced in DNA polymerase epsilon and delta 3'-->5' exonuclease-deficient yeast mutants, pol2-4 and pol3-01, respectively. We have constructed a set of isogenic strains to determine whether the DNA polymerases delta and epsilon contribute equally to proofreading of replication errors provoked by HAP during leading and lagging strand DNA synthesis. Site-specific GC-->AT and AT-->GC transitions in a Pol+, pol2-4 or pol3-01 genetic background were scored as reversions of ura3 missense alleles. At each site, reversion was increased in only one proofreading-deficient mutant, either pol2-4 or pol3-01, depending on the DNA strand in which HAP incorporation presumably occurred. Measurement of the HAP-induced reversion frequency of the ura3 alleles placed into chromosome III near to the defined active replication origin ARS306 in two orientations indicated that DNA polymerases epsilon and delta correct HAP-induced DNA replication errors on opposite DNA strands.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.