Abstract

Isotope ratio measurements provide a tool for indicating the relative significance of biogeochemical reactions and for constraining estimates of the extent and rate of reactions in passive treatment systems. In this paper, the reactive transport model MIN3P is used to evaluate sulfur isotope fractionation in column experiments designed to simulate treatment of contaminated water by microbially mediated sulfate reduction occurring within organic carbon-based and iron and carbon-based permeable reactive barriers. A mass dependent fractionation model was used to determine reaction rates for 32S and 34S compounds during reduction, precipitation, and dissolution reactions and to track isotope-dependent mass transfer during SO4 removal. The δ34S values obtained from the MIN3P model were similar to those obtained from the Rayleigh equation, indicating that there was not a significant difference between the conceptual models. Differences between the MIN3P derived α value and the Rayleigh equation derived value were attributed to minor changes in the dissolution and precipitation rate of gypsum and mathematical differences in the fitting models. The results indicated that the prediction of δ34S was fairly insensitive to differences in the fractionation factor at the concentration ranges measured in the current study. However, more significant differences would be expected at low sulfate conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.