Abstract

The inbred Fischer (F344) and Lewis (LEW) rats, while originally developed as animal models for cancer and tissue transplantation research, have since been used to study genetic differences in a variety of physiological and behavioral endpoints. In this context, LEW rats show greater sensitivity to the aversive effects of cocaine as compared to F344 rats in a conditioned taste avoidance procedure. Like cocaine, 3,4-methylenedioxypyrovalerone (MDPV; “bath salts”) acts as a dopamine transport blocker and possesses aversive properties, making it a good candidate for assessing whether the aforementioned strain differences with cocaine would generalize to drugs with similar biochemical action. Accordingly, male F344 and LEW rats were exposed to a novel saccharin solution followed by injections of one of four doses of MDPV in a taste avoidance procedure. Over the four saccharin/MDPV pairings during conditioning, core body temperatures were also assessed. Similar to previous research, MDPV induced robust dose-dependent taste avoidance, although no effect of strain was observed. MDPV also produced hyperthermia that was independent of strain and unrelated to the conditioned taste avoidance. These findings argue for a complex influence of multiple (and likely interacting) monoaminergic systems mediating MDPV-induced taste avoidance in the two strains and suggest different mechanisms of avoidance learning for cocaine and MDPV.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.