Abstract
Generation of human neuronal networks by three-dimensional (3D) bioprinting is promising for drug testing and hopefully will allow for the understanding of cellular mechanisms in brain tissue. The application of neural cells derived from human induced-pluripotent stem cells (hiPSCs) is an obvious choice, since hiPSCs provide access to cells unlimited in number and cell types that could be generated by differentiation. The questions in this regard include which neuronal differentiation stage is optimal for printing of such networks, and to what extent the addition of other cell types, especially astrocytes, supports network formation. These aspects are the focus of the present study, in which we applied a laser-based bioprinting technique and compared hiPSC-derived neural stem cells (NSCs) with neuronal differentiated NSCs, with and without the inclusion of co-printed astrocytes. In this study, we investigated in detail the effects of cell types, printed droplet size, and duration of differentiation before and after printing on viability, as well as proliferation, stemness, differentiation potential, formation of dendritic extensions and synapses, and functionality of the generated neuronal networks. We found a significant dependence of cell viability after dissociation on differentiation stage, but no impact of the printing process. Moreover, we observed a dependence of the abundance of neuronal dendrites on droplet size, a marked difference between printed cells and normal cell culture in terms of further differentiation of the cells, especially differentiation into astrocytes, as well as neuronal network formation and activity. Notably, there was a clear effect of admixed astrocytes on NSCs but not on neurons.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.