Abstract

Gene delivery methods are essential to understand fundamental cellular mechanisms and to develop new therapies. Recombinant viruses are efficient to transfer nucleic acids but their safety is a concern. In addition, some commercial transfection reagents (including lipids and cationic polymers) and electroporation methods are cytotoxic. Interestingly, the sole expression of G envelope protein of the vesicular stomatitis virus (VSV) in mammalian cells can lead to the formation of VSV-G pseudotyped vesicles (V-VSV-G). In presence of polybrene, these vesicles are able to transfer plasmids in a large panel of animal cells. Unfortunately, the production of V-VSV-G and their use for nucleic acid delivery is poorly documented. Here we propose to improve this promising method of transfection. At first we developed a V-VSV-G production process by transient transfection of HEK-293 cells using polyethylenimine (PEI). Three modes of production were compared: cells cultivated in adherence, in suspension and on micro-carriers. Also we demonstrated that the quantity of vesicles produced depends on the VSV-G sequence used. The harvest of V-VSV-G from cell culture media was also optimized. Then, several parameters potentially involved in the formation and the transfer efficiency of V-VSV-G/DNA complex were studied: polybrene concentration, order of addition of mix transfection components, incubation time of the complexes, medium of transfection, etc. Stability studies also demonstrated that V-VSV-G are robust particles: DNA transfer capacity of V-VSV-G is efficient after 10 freezing and thawing cycles and V-VSV-G can be stored for long term at +4 °C, -20 °C and -80 °C. Finally, V-VSV-G/DNA ratio was optimized for three different cell types. Transfection efficiency of 70 % and 55 % were obtained for HEK-293 and HeLa cells respectively, with 1 µg of V-VSV-G and 0.4 µg of DNA. Transfection of refractory cells such as human myoblasts, reached 25 % with 5 µg of V-VSV-G and 0.8 µg of DNA. V-VSV-G can also deliver large plasmids (18 kb). Furthermore, no cytotoxicity was observed in cells transfected with these complexes. Presently, the potential of V-VSV-G to transfer siRNA is investigated. In conclusion, V-VSV-G is a powerful tool for nucleic acid delivery which could be useful for several applications oriented toward cell and gene therapies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.