Abstract
Oocytes from prepubertal calves have a decreased developmental competence compared with oocytes from adult animals. The goal of this study was to improve the developmental competence of juvenile oocytes by maturation on granulosa cell (GC) monolayers from adult animals. Oocytes were recovered by ovum pickup (OPU) from 48 Holstein Friesian calves at 7-8 months of age and 18 adult cows. Animals received intramuscular injections of 60 mg FSH 48 h prior to each OPU session. Follicles were punctured twice per week in six consecutive OPU sessions. Cumulus oocyte complexes (COCs) recovered from calves were divided into three quality groups (classes I-III) and were then randomly distributed into three maturation groups: COCs were matured for 24 h on either GC or fibroblasts or without co-culture. Cow oocytes were matured without co-culture. TCM-199 supplemented with BSA (0.1%), hCG (5 IU/mL), and eCG (10 IU/mL) served as the medium in all groups. After maturation, all COCs were fertilized in vitro; after 18 h, presumptive zygotes were cultured in SOF+BSA for 8 days (37�C, 5% CO2). On Day 3, cleavage rates and, on Day 8, blastocyst rates were determined. The relative mRNA abundance of the following transcripts, critically involved in early embryonic development was determined: growth differentiation factor-9 (GDF-9), heat shock protein 70 (Hsp-70), and glucose transporter-3 (Glut-3). Single immature and matured oocytes (for GDF-9 and Hsp-70) and 8-16-cell embryos and expanded blastocysts (for Hsp-70 and Glut-3) from calves and cows were examined by semiquantitative RT-PCR. Cleavage and blastocyst rates were similar in oocytes derived from cows and calves matured on GC (74.3% vs. 70.0% and 22.3% vs. 22.3%, respectively), but were significantly higher (P < 0.05; one way ANOVA, Student-Newman-Keuls Method) than in the group without co-culture on fibroblasts (55.2% vs. 53.6% and 11.7% vs. 5.5%, respectively). GDF-9 expression was similar in immature calf and cow oocytes. After maturation, a significant decrease in GDF-9 expression was observed in calf oocytes. Matured cow oocytes showed a significantly higher mRNA abundance of GDF-9 than matured calf oocytes. The relative abundance of Hsp-70 was decreased in matured oocytes of all groups. Expanded blastocysts derived from adult oocytes expressed Hsp-70 significantly higher than blastocysts derived from oocytes of the control calves. The relative abundance of Glut-3 mRNA was similar in 8-16 cell embryos and expanded blastocysts in all groups. Overall, mRNA expression pattern for Hsp-70 and Glut-3 in blastocysts from GC matured oocytes were similar to that of cow blastocysts. Results indicate that maturation of juvenile calf oocytes on granulosa cells from adult animals improves their developmental competence. These findings provide clues toward identification of factors critically involved in acquiring full developmental capacity at puberty.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.