Abstract

We report a heterodyne receiver using a superconducting NbN hot electron bolometer (HEB) integrated with a tight winding spiral antenna as mixer and a distributed feedback (DFB) terahertz quantum cascade laser (QCL) operating at 3.42 THz as local oscillator. The aim is to demonstrate the readiness of both devices for the detection of OH lines at 3.5 THz in a real instrument. We show that the improved single-spot beam of the terahertz QCL can easily pump the HEB mixer. We measured a double sideband receiver noise temperature of 2100 K at the optimum local oscillator power of 290 nW. This noise temperature can be further reduced to 1100 K if we correct the loss due to the use of an uncoated lens, and the losses of the window and the air. Therefore, the combination of a HEB and such a DFB QCL can in principle be used to detect an OH line at 3.5 THz. However, a high input power of several watts, which is needed to operate the QCL in a liquid-helium cryostat, poses a big challenge to the receiver stability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.