Abstract

The sulfur-33 chemical shift and 33S and 17O nmr relaxation data are reported for liquid sulfur dioxide. The 33S nucleus in SO2 is highly deshielded, 375 ± 2 ppm to high frequency of the sulfate anion. The rotational correlation time of SO2 at 294 K, 0.3 ps, is only about twice that calculated using an inertial model. The temperature dependence of the 33S and 17O nmr relaxation data can be described by an average activation energy of 6.3 ± 0.6 kJ mol−1. The effective rotational correlation time derived from 33S nmr line widths is used to calculate the 17O quadrupolar coupling constant, e2qQ/h = 6.6 ± 0.7 MHz, in SO2.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call