Abstract

Regulation of angiogenesis is recognized as a crucial component in the treatment of multiple diseases, e.g. cardiovascular disorders, cancers, diabetes. At the same time, gene therapy is a promising tool for angiogenesis manipulation. Its wide clinical application is, however, limited by the lack of suitable theranostic gene delivery systems. To address this issue, in this study we intended to develop an efficient method for magnetically guided manipulation of endothelial cells. First, we defined optimal conditions for HUVEC transfection with microRNA (miR) using polyethyleneimine-magnetic nanoparticle based vector (PEI/MNP), pre-designed in our group. We found that miRNA can be efficiently delivered with PEI/MNP vector without affecting cell survival and functionality. Furthermore, the presence of magnetic component offers certain targeting and non-invasive MRI monitoring opportunities, which we investigated in vitro. Two different approaches were assessed: direct vector guidance and magnetic targeting of transfected cells. As a result, production of miR/PEI/MNP-modified magnetically responsive cells has been selected for further investigation as it was more efficient. We have demonstrated in vitro that up to 80% of transfected cells can be driven to the site of interest by magnetic field. In addition, properties of engineered cells were monitored up to 96 hours and proposed modification strategy has been proven safe. Further, transfected cells were tested in vitro in terms of MRI detection potential. We observed that 104 cells can be detected, when loaded with at least 0.2 pg iron/cell. This and higher intracellular iron concentrations were achieved at optimal transfection conditions defined previously. Moreover, we showed that miR/PEI/MNP-modified endothelial cells do maintain intercellular gap-junctional communication and potentially can exchange miR, serving thereby as its carrier. Taken together, obtained results are indicating that miR/PEI/MNP-modified cells are particularly promising as a multifunctional tool for magnetically guided angiogenesis regulation.View Large Image | Download PowerPoint Slide

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.