Abstract

The development of genetic transformation systems has led to remarkable progress in the area of plant molecular biology. This has included the introduction of useful traits, such as resistance to viruses, herbicides, and insects. Transformed plant cells can be selected, using chimeric genes that confer resistance to toxic drugs, such as kanamycin, hygromycin, streptomycin, gentamycin, and bleomycin. Expression of these chimeric genes in the transformed cells confers the ability to survive and proliferate on the selective medium, while non-transformed cells die. In this study, we report a simple and efficient system to regenerate Chinese cabbage plants and study of the effects of plant growth regulators, AgNO3, initial dark treatment, various antibiotics, and herbicide on shoot induction from hypocotyl or cotyledon of Chinese cabbage. Shoots were induced at various combinations of naphtalene acetic acid (NAA) and benzyladenine (BA) levels. The best combination of plant growth regulators was 2.0 mg/L NAA and 1.0 mg/L BA for cotyledon, and 1.0 mg/L NAA and 5.0 mg/L BA for hypocotyl. The experiment investigating the effect of AgNO3 demonstrated that 16.7 mg/L AgNO3 was effective for inducing shoot regeneration from both of explants. Three to five days of initial dark treatments had significant effects for increasing the number of regenerated shoots; however, different growth regulator combinations showed various responses to duration of dark treatments. The effects of kanamycin, hygromycin, cefatoxime, carbenicillin and phosphinothricin (PPT) on shoot induction from cotyledon and hypocotyl were tested. Shoot induction was completely inhibited by kanamycin at 10 mg/L, hygromycin at 5 mg/L, PPT at 5 mg/L or higher, but not by carbenicillin and cefatoxime.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.