Abstract

OBJECTIVES/GOALS: Treatment options for glioblastoma (GBM) are limited. Prognosis remains dismal, with an 18 month on average survival rate following diagnosis due to treatment resistance and disease recurrence. The goal of this project is to investigate hallmarks of cancer progression that contribute to temozolomide (TMZ) resistance, a first tine treatment for GBM. METHODS/STUDY POPULATION: Two signaling pathways were investigated in TMZ-sensitive and -resistant GBM cell lines and in primary and recurrent patient-derived xenograft (PDX) tumor cells by genetically and pharmacologically inhibiting methionine adenosyltransferase 2A (MAT2A) and adenosylhomocysteinase (AHCY). Cell growth and survival were assessed by measuring protein expression of proliferation, oxidative stress and cell cycle arrest markers. EPIC array analysis and targeted bisulfite sequencing were conducted to identify changes in genome-wide and specific CpG island methylation. The Seahorse XF Analyzer measured mitochondrial respiratory capacity and oxidative metabolism. Induced pluripotent stem cell organoids were co-cultured with PDX tumor cells to determine if treatments mitigate tumor cell invasiveness. RESULTS/ANTICIPATED RESULTS: Compared to parental cells (PC), MAT2A gene expression was increased by 1.7-fold in acquired resistant and de novo resistant GBM cells (RC) [(transcript per million): PC, 7386 ± 0.012; RC, 12925 ± 0.023; n=2; p=2.10e-8]. Compared to TMZ-sensitive cells (TS), TMZ-resistant cells (TR) demonstrated a 56% increase in baseline oxygen consumption rate [(pmol/min): TS, 179 ± 6.7; TR, 279 ± 13; n=18; p=.0012] and 64% increase in maximal respiratory capacity [(pmol/min): TS, 403 ± 29; TR, 659 ± 35; n=6; p DISCUSSION/SIGNIFICANCE: MAT2A and AHCY contribute to TMZ resistance and recurrence by dysregulating methylation programs and upregulating antioxidant programs, respectively. These findings provide a foundation for developing novel combinatory therapeutic strategies and inform clinical studies intended to increase remission and reduce recurrence for GBM patients.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.