Abstract

AbstractThe anomalous Hall effect (AHE) can be induced by intrinsic mechanisms due to the band Berry phase and extrinsic one arising from the impurity scattering. The recently discovered magnetic Weyl semimetal Co3Sn2S2 exhibits a large intrinsic anomalous Hall conductivity (AHC) and a giant anomalous Hall angle (AHA). The predicted energy dependence of the AHC in this material exhibits a plateau at 1000 Ω−1 cm−1 and an energy width of 100 meV just below EF, thereby implying that the large intrinsic AHC will not significantly change against small‐scale energy disturbances such as slight p‐doping. Here, the extrinsic contribution is successfully triggered from alien‐atom scattering in addition to the intrinsic one of the pristine material by introducing a small amount of Fe dopant to substitute Co in Co3Sn2S2. The experimental results show that the AHC and AHA can be prominently enhanced up to 1850 Ω−1 cm−1 and 33%, respectively, owing to the synergistic contributions from the intrinsic and extrinsic mechanisms as distinguished by the TYJ model. In particular, the tuned AHA exhibits a record value among known magnetic materials in low fields. This study opens up a pathway to engineer giant AHE in magnetic Weyl semimetals, thereby potentially advancing the topological spintronics/Weyltronics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.