Abstract

The reaction of 3,4-epoxy-1-butene (BMO) with deoxyguanosine-3'-monophosphate (3'-dGMP) resulted in the formation of two pairs of diastereomeric 7-alkyl-3'-dGMP derivatives corresponding to two isomers C¿-1 and C¿-2. The T4 polynucleotide kinase-mediated phosphorylation with [gamma-32P]-ATP showed preferential labelling of diastereo- mers of the C¿-1 isomer. The diastereomers 1 and 2 of the C¿-1 isomer had labelling efficiencies of 42%. However, the labelling efficiencies of diastereomers 3 and 4 of the C¿-2 isomer were 11 and 10%, respectively. The 32P-postlabelling of BMO-modified DNA yielded four isomers in the ratio of 4:4:1:1 with overall recoveries being 14%. The two isomers had a half-life of 270 min (C¿-1 isomer) and 300 min (C¿-2 isomer) which is in accordance with the stability predicted by other similar adduct experiments. The molecular modelling experiments showed more pronounced restricted rotation of butadiene residue in C¿-2 isomers due to steric interaction between butadiene residue at N-7 and O(6) atom of guanine than in C¿-1 isomer. The butadiene residue also leads to steric overcrowding at 3'-phosphate in C¿-2 isomer which probably restricts the access to the active site of T4 polynucleotide kinase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.