Abstract

Acrylamide (AA) is produced in many types of food products cooked or processed at high temperature. AA is metabolized to the epoxide glycidamide (GA), which can bind to deoxyguanosine and deoxyadenosine in DNA. The GA-derived N7-guanine and N3-adenine adducts are the only products which so far have been analysed in vivo. Because of previous excellent experience from analysis of adducts to N1-adenine, the aim of our study was to investigate if the N1-adenine adduct of GA could be used as a biomarker of AA exposure. A 32P-postlabelling method was developed and tested (a) on DNA modified in vitro with GA, (b) on cells treated with GA and (c) on liver DNA from mice treated with AA. The N1-adenine adduct of GA (analysed after conversion to N 6-GA-deoxyadenosine-5′-monophosphate) was easily detected in DNA reacted with GA and in DNA from cells exposed to GA, but not in DNA from mice treated with AA. The reason for this is currently not clearly understood, but some of the possible contributing factors are discussed. The application of the method in other experimental conditions should be further pursued in order to solve this matter.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call