Abstract

A 32P-labelled ATP analog, 3'-O-(4-benzoyl)benzoyl ATP (BzATP) previously shown to be an agonist at P2Y-purinergic receptors (Boyer J. L., and Harden T. K. (1989) Mol. Pharmacol. 36, 831-835), has been used as a probe for the P2Y-purinergic receptor on turkey erythrocyte plasma membranes. In the absence of light, [32P]BzATP bound to membranes with high affinity (KD approximately 5 nM), and in a saturable and reversible manner. The binding of [32P]BzATP was competitively inhibited by ATP and ADP analogs (2-methylthioadenosine 5'-triphosphate greater than adenosine 5'-O-(2-thiodiphosphate) greater than BzATP greater than ATP greater than beta,gamma-methyleneadenosine 5'-triphosphate greater than 5'-adenylylimidodiphosphate) with pharmacological specificity consistent with that of a P2Y-purinergic receptor. Guanine nucleotides (guanosine 5'-O-(3-thiotriphosphate) greater than GTP greater than guanosine 5'-O-(2-thiodiphosphate) greater than GMP) noncompetitively inhibited the binding of radioligand. Photolysis of [32P] BzATP-prelabeled membranes resulted in incorporation of radiolabel into a protein of approximately 53,000 Da. Photolabeling was inhibited in a concentration-dependent manner by ATP and ADP analogs with a potency order characteristic for a P2Y-purinergic receptor and was modulated by guanine nucleotides. A protein of approximately 53,000 daltons was also labeled by [32P]BzATP in membranes from several other tissues known to express the P2Y-purinergic receptor. These results suggest that [32P]BzATP can be used to label covalently the P2Y-purinergic receptor and that this radioprobe will be a useful reagent for further characterization and purification of the P2Y-purinergic receptor.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.