Abstract

Chemically amplified resist materials are now available to reach critical dimensions of the pattern close to 32 nm values. Pattern collapse is a very serious problem in fine patterning less than 32 nm critical dimension, because it decreases the yield. The pattern collapse is the pattern response to unbalanced capillary forces acting on the pattern walls during the spinning drying step after development process. Centrifugal force has not considered for pattern collapse modeling up to now, so that pattern collapse due to spinning is studied. In this study we investigate the 32 nm node pattern collapse mechanism with radial distance and rinse speed of dense patterns. In the process of creating the simulation tool, the rotating model is used. As rinse speed and radial distance are increased, critical aspect ratio is decreased. As a result, pattern collapse is increased.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call