Abstract

Diffusion and functional magnetic resonance imaging of the spinal cord remain challenging due to the small cross-sectional size of the cord and susceptibility-related distortions. Although partially addressable through parallel imaging, few highly parallel array coils have been implemented for the cervical cord. Here, we developed a 32-channel coil that fully covers the brain and c-spine and characterized its performance in comparison with a commercially available head/neck/spine array. Image and temporal signal-to-noise ratio were, respectively, increased by 2× and 1.8× in the cervical cord. Averaged g-factors at 4× acceleration were lowered by 22% in the brain and by 39% in the spinal cord, enabling 1-mm isotropic R = 4 multi-echo magnetization prepared gradient echo of the full brain and c-spine in 3:20 min. Diffusion imaging of the cord at 0.6 × 0.6 × 5 mm(3) resolution and tractography of the full brain and c-spine at 1.7-mm isotropic resolution were feasible without noticeable distortion. Improvements of this nature potentially enhance numerous basic and clinical research studies focused on spinal and supraspinal regions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call