Abstract

Sorption of phosphate onto gibbsite (gamma-Al(OH)3) and kaolinite has been studied by both macroscopic and 31P solid-state NMR measurements. Together these measurements indicate that phosphate is sorbed by a combination of surface complexation and surface precipitation with the relative amounts of these phases depending on pH and phosphate concentration. At low pH and high phosphate concentrations sorption is dominated by the presence of both amorphous and crystalline precipitate phases. The similarity between the single-pulse and CP/MAS NMR spectra suggests that the precipitate phases form a thin layer on the surface of the particles in close contact with protons from surface hydroxyl groups or coordinated water molecules. While the crystalline phase is only evident on samples below pH 7, amorphous AlPO4 was found at all pH and phosphate concentrations studied. As pH was increased the fraction of phosphate sorbed as an inner-sphere complex increased, becoming the dominant surface species by pH 8. Comparison of sorption and NMR results suggests that the inner-sphere complexes form by monodentate coordination to singly coordinated Al-OH sites on the edges of the gibbsite and kaolinite crystals. Outer-sphere phosphate complexes, which are readily desorbed, are also present at high pH.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.