Abstract

31P-NMR spectra of four distinct subspecies of Manduca sexta hemolymph lipophorin revealed the presence of two resonances separated by 0.6 ppm. Phospholipid analysis of the lipoproteins showed that phosphatidylcholine (PC) and phosphatidylethanolamine (PE) were present and their mass ratio correlated well to the intensity of the two resonances in each of the different subspecies. The two resonances persisted in 31P-NMR spectra of organic solvent extracts of lipophorin. These results, together with the fact that PE, but not PC, can form an intramolecular hydrogen bond between the phosphate oxygen and the amino group of ethanolamine, resulting in deshielding of the phosphorus nucleus (and a 0.6 ppm downfield shift), strongly suggest the resonances observed represent the PC and PE components of these lipoproteins. 31P-NMR line-width data obtained as a function of temperature and solvent viscosity were used to calculate the chemical shift anisotropy (delta sigma), intrinsic viscosity (eta'), and lateral diffusion coefficients (DT) of PC and PE in different lipophorin subspecies. eta' and DT for PC and PE were similar among high-density lipophorins but differed in low-density lipophorin (LDLp). These differences may be related to the large increase in diacylglycerol content in this particle and/or the association of up to 16 molecules of apolipophorin III. On the basis of the known lipid compositional differences between LDLp and high-density lipophorin subspecies, we propose that uptake of large amounts of diacylglycerol during LDLp formation results in partitioning of this lipid to the surface monolayer where it intercalates between phospholipid molecules. Diacylglycerol intercalation creates gaps between phospholipid head groups that expose the hydrophobic surface.(ABSTRACT TRUNCATED AT 250 WORDS)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.